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Barsiwith karcular ross Secltion s

[Basic Assumptions]

* Plane parallel cross
sections remain plane
and parallel after
deformation

* Cross sections of the
bar rotate as rigid
bodies about the z-axis

= Shearing strain varies
linearly in the radial
direction

[Kinematic Relations |

prdh .’

b= dd"
dz & <
= angle of X
Satpr | Static Relations |

unit length M, = ' tdAr
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Bars WilhiarCularGrossiSeClion s

Constitutive Relations

=Gy

undeformed
plane

Barsiwith 5olid Noncircular
GrossiSeClions

IBasil: Assumptiun:’]

* Plane cross sections

do not remain plane
after deformation -
they become warped i
surfaces. Warping | lems uo

is accompanied by TR ,
increase in shear strain [and stress) in some
parts and decrease in others.

* Cross sections do not distort in their own
plane.

= Every point in the cross section rotates about
a center of twist.

Undeformed M,

Bars with Solid NoRcireuiar,

CrosslSeclions

* Cross sections do not distort in their own
plane.

* Every point in the cross section rotates about
a center of twist.

* No external constraints exist to prevent any

cross section from warping
[Saint-Venant torsion|.




Barsiwilh Solid Noncrcular,
GCIossISeLtions

[Kinematic Relations |
= Displacement components

A Undetormed end seclion
u 5 |
{ v } = Xz 8 ¢
W yixy) =

where!\|f is the warping function and q is the
angle of twist per unit length.

Undeformed end section
Deformed end section

Bars with Solid NoRcireuiar,

(CrOSEISECliONS
* Strain components




Bars with Solid o circalar

GrossiSeclions)

| Static Relations |
Equilibrium Equations

Bars Wilth Solid NBRERGUIET,
GrossISeclions

= Strain components satisfy the following

compatibility equation m
u

-I',':{-u | 4
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Bars Wilth Solid NBRERGUIET,
GrossISeclions

Constitutive Relations |

For linearly elastic isotropic material

Ty T 1
“=n'w=ctzz=ﬁ Iq:@-pm




BarswilthiSelidiNoRGrcoiar:

Crossiseclions

Bars with SolidiNohcrcular
GrossiSeclions

Therefore, the equilibrium

equations reduce to:

_EZ =0 = 1= T (XY) \]

and

* Introducing a stress function § = §(x,y) such that
o
| =)o)
{ ‘w} T_%
’] oX

The equilibrium equation

] :

{Tﬂ.i.‘-lzkz ]
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cy =]
LS x
becomes identica ll}r M,
satisfied. i

BarsiwithiSolid Noncircular:

GCrossISeClions

» The compatibility equation | fx; _lyz _ 20
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Barstwith SelidiNohnmrcalar

Crossiseclions

|Boundary Conditions | o

= dx
sinu= gz

dy
dc
Tyz=1 COS

Cosa=

Tz=18Ino

Since the shear stresses are tangential to

the boundary

Ty Sinu—1,c080=0 []




Crossiseclions

TaSNog—-1,co08sa=0
I yZ XL E{

or

) (-3) - ()5 =°
dﬂ}:t]
dc

BarswilhiSelidiNonarcoiar,

or, { = const. at the boundary

Bars Wilth Solid NBRERGUIET,
GCrossISeCtions

| Twisting Moment |

M, = L [~y ¥ * Typ X)dA

= [[[-ay v+ [-aa) xjoa

-

2¢:dA+’
ﬂ WO

dx dy
y(- gx) - e Jooe
If ( is set equal to zero at the boundary, then

M, = L 2 dA

dorsion Formulas lor Special
Cross Sections

|EHiptic Cross Sections |

Stress Function and Shear Stresses
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diorsion Formulas ior Special

CrHosSsISections
3 |ENliptic Cross Sections |

Axial Displacement

T6rs10N Fomulas Jor speciall
GrossiSeEctions
|EHiptic Cross Sections |
Angle of twist per unit length
Mi
o= &1,

where
l,=na%%/(a2+b?) []
1 is called the torsion constant.
G 1 is the torsional stiffness.

* Maximum shear stress occurs at the boundary
nearest the centroid of the cross section

Tmax = _L__""_ j

dprsion Formulasior Special
CrossiSeclions
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dorsion Formulas lor Special

Cross Sections

|Equilateral Triangular Cross Section |

I+ [sa] & |

Mt
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" 2n(1543)),
Mt

a® /20

Jorsion Eormulas forSpecial

CrossSections

8

co

=




dorsion Eormulas for Special

drorsion Formulas for Specia

Cross Sections GrosE Seclions

fﬁexagonal Cross Sections ‘

[Rectangular Cross Section | -
a4 T + Angle of twist per unit length :
8.8 | e, |
where I, =k,h b? 3

* Maximum shear stresses occur at the
center of the long side at the boundary

(a®157] ™t ]

Jorsion Formulas ior Specia
CrossiSeclions

%ﬁmax
y

|Rectangular Cross Section |

=

B = “

ky and k3 are parameters which depend on

1-'—1'-h |
. e 10 o

the ratio h/b.
j h/b 1 1.5 z 2.5

Iy |0.141|0.196 | 0.229 | 0.239 0.312 | 0.333
] ks | 0.208 | 0.231 | 0.246 | 0.256 0.312 | 0.333




dorsion Eormulas for Special

dorsion FormulasiorSpecial
CrossiSeclions

Narrow Rectangular and Thin-Walled Cross
Sections

Gross Sechions

|Narrow Rectangular Sections |
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Barswith iihmswalled

Cross Seclions

Definitions

Bars withiihin-walled Glosed
GCross Seclions

* Tubes - thin-walled closed
sections

* Cell — area enclosed by a tube

| Classification of Thin-Walled Closed Sections |

Barswilhidnin=walled| Glosed

GrossiSections

Difference Between Torsional Shear Stresses
in Bars with Open and Closed Sections
M Open thintwalledisection
— Shear stresses are linear through
the thickness and are zero at the centerline
— Maximum shear stresses occur at location

| Classification of Thin-Walled Closed Sections |

-

) |+ DTS - encloses
more than one cell

» HEEEEETTEE - encloses
only one cell

elements (mixed open-closed
cross section)

. Imia E%— composed of 2
a closed cell plus open fin .ﬂ‘@a

GCross Sectlions

Difference Between Torsional Shear Stresses
in Bars with Open and Closed Sections

R Closed hollow circularsection

= Shear stresses vary linearly with the radiusr,
becoming nearly uniform for very thin tubes

Harswithiiibm=walled Glosed
Cross Seclions

Shear Stresses and Shear Flow in
Thin-Walled Closed Sections (Tubes)

* Shear stresses are tangent to the wall
of the cross section

= Shear flow at any point is the product
of the shearing stress and the thickness
q=rtt
+ Equilibrium of a slice of
the bar
— For any cross section
9= T1t; =Tty
i.e., shear flow is
constant.




Harswithiiibm=walled Glosed

Hars withidihin=swalled Glosed

Cross Seclions

+ Equilibrium of a slice of
the bar

Cross Seciions
- Relation between twl'nlng moment and

shear flow da

— For any cross section i

q=tyty=1ata M, = lqrds

i.e., shear flow is : ]

constant. u

3 L =q | rds

= Relation between twisting moment and g

shear flow

ds
. — The integral
M, = j-qrds 951: 2
B J rds = 20(s4) [] &
B o
=q-lrds

 Bars with ihin-walled Closed
GCrossiSections

— The integral

L fal 4]

— For the entire cross section
-sl. — "
g |, ras=20(s) 1 w Lk [res=za]] x
u L —
where () is the sectorial area. Wihese A e total area

enclosed by the centerline
— For the entire cross section of the tube.

. -

or
where A is the total area
enclosed by the centerline & iR M,
of the tube. q 2A :I

Bars with Thin-walled Glosed Barswithidhin=walled Glosed
Cross Seclions GCrossSecltions

where A is the total area |Torsional Strain Energy per Unit Length |

enclosed by the centerline Sl
] e . Tor:lnn:l shearing strain |.-' G -
] =3 Jurs
8 or ;

3
2 M
M =il I tds , =_ "t
q=rtt= gt [] 2! G gk
M 2 3 T My
— Maximum shear stresses occur at t g (by u= —_it, — ’ -{—‘t-— d ,
contrast, in open thin-walled section they A°G 4 AU Al
occur at tmax). v T




Harswithiiibm=walled Glosed

Cross Seclions

Work Done by the Twisting Moment
[per Unit Length]

w

3 M0
u

|Angle of Twist per Unit Length |

Hars wilth dimin=walled! Glosed

Cross Seciions

Comparison Between the Torsion Formulas for
Circular Cross Section and Those Tubes

GirculariCross Scction)

L+ =1

Comparison Between the Torsion Formulas for
Circular Cross Section and Thin Tube

where

Harswithiiibm=walled Glosed
Cross Seclions

Cqmparlsnn Bet'\_imen ﬂ:e:ansin_n F_nr_mulas.fnr
Circular Cross Section and Those Tubes

singlecelliabe)]

Bars withiiihin-walled Glosed
Gross Seciions

Comparison Between the Torsion Formulas for
Circular Cross Section and Those Tubes
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Harswithiiibm=walled Glosed

Cross Seclions

Bars withiihinswalled Glosed
Cross Seciions

Cqmparfsnn Bet'\_ivnen ﬂ:e:ansin_n Enr_qlulas.fnr
Circular Cross Section and Those Tubes

SingleCellfube;

Barsiwilti i hxn—vfalic,d Glosed
GrossiSections

Comparison Between the Torsion Formulas for
Circular Cross Sredinn and Those Tubes

single-Cellfiube]

where

Comparison Between the Torsion Formulas for
Circular Cross Section and Those Tubes

Single-Cell Tube

where

 Barswith thin-walled Glosed
GCrossiSectiions

Comparison Between the Torsion Formulas for
Circular Cross Section and Those Tubes

Single Gelll Tube)

Harswithiiibm=walled Glosed

Cross Seclions

Comparison Between the Torsion Formulas for

Circular Cross Section and Those Tubes
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Harswithiiibm=walled Glosed

Cross Seclions

Cqmparlsnn Between ﬂ:e:ansin_n F_nr_mulas.fnr
Circular Cross Section and Those Tubes

Jorsioniof Multicell hinswalled

irSes
* For multicell tubes in pure torsion, equilibrium
equations are not sufficient for determining the
shear stresses and shear flow. Consideration of
the compatibility of deformation is required to
solve the problem-statically indeterminate
problem.
= Consider a multicell tube
with n cells.
Equilibritim

where
q; =shear flowincell i

and A; =areaof cell i

(iR5tios |
MaX e 1+ ?Lz g -
Fmax cir LEs

Bars withiihin-walled Glosed
GCross Seclions

Comparison Between the Torsion Formulas for
Circular Cross Section and Those Tubes

= —

i —
Torsion oL Multicelldhinwalled

Tubes
Cross sections warp, but do not
distort in their own plane.
Entire cross section, and each
cell rotate at the same rate
of twist [compatibility
equations)

[04=0,=..=0;=...=0,=0|
where 0; = rate of twist of cell i
If cell i is bounded by cells i-1 and i+1, then
| ds [ ds i
T_qi—1| T

B

o
G 1
I aGA;

qi

oB -
1,0
il

bi dorstonoividiticell answalled
TibBes

If cell i is bounded b}" m cells instead of two
d " d
q; | T$—' ) qFJ "ti]
o 5
g

=1
h

1
0 | %26,

This equation can be written
in the following form:

fn!h",g, fiqe—2R;0=0[]
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Torsionioiviuiticelldhin=awalled

Tihes

This equation can be written

in the following form:
g W%*gﬂﬂfiaﬂ=ﬂ'

where

Jorsioniof Multicell hinswalled
TiBes

— =rate of twist due to unit shear flow along the
:l web between cellsr and i
{1 (a,=1,9,=0,i # 1]

dorstonoividiticell annswalled

SIDES
fij and f; are called warping flexibilities.
Flexibility coefficients
. 1
ﬁ.-zﬁlm
B _ 1 f[as H
2GA, | t
] ]

= rate of twist due to unit shear|
| flow incelli

(9; =1.9,=0,r# i)

BarsWItH VDY id erosSISELlion

Three Cell Tube
Cell Areas
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Examples

Three Cell Tube
] [Direct and Cross Warping Flexibilities|
H 1 ds
5 6= =D — | ot
CJo 1 AR
s A= | La-:q n;.q;
2b N A 1B

fps = f3p = - Gt

Three Cell Tube
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Three Cell Tube
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|[Equilibrium Equation|

i q1(3b2)+qz(2b2)+qﬂ(n?bz)

Three Cell Tube
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Three Cell Tube
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Comparison Between Torsional Stiffnesses

of a Seamless and a Split Circular Thin Tube
[Seamless Tube |

Comparison Between Torsional Stiffnesses
of a Seamless and a Split Circular Thin Tube

[Seamless Tube |

:l where

]

A

d; .
dD

-

\ 4
Comparison Between Torsional Stiffnesses II
of a Seamless and a Split Circular Thin Tube
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Comparison Between Torsional Stiffnesses
of a Seamless and a Split Circular Thin Tube
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